[1]盖祥云,林鹏程,何彦峰,等.低氧性肺动脉高压中低氧性肺血管收缩的作用[J].中国药理学通报,2016,(06):768-772.[doi:10.3969/j.issn.1001-1978.2016.06.007]
 GAI Xiang-yun,LIN Peng-cheng,HE Yan-feng,et al.Effect of hypoxic pulmonary vasoconstriction on hypoxic pulmonary hypertension[J].Chinese Pharmacological Bulletin,2016,(06):768-772.[doi:10.3969/j.issn.1001-1978.2016.06.007]
点击复制

低氧性肺动脉高压中低氧性肺血管收缩的作用()
分享到:

《中国药理学通报》[ISSN:/CN:]

卷:
期数:
2016年06期
页码:
768-772
栏目:
讲座与综述
出版日期:
2016-06-15

文章信息/Info

Title:
Effect of hypoxic pulmonary vasoconstriction on hypoxic pulmonary hypertension
文章编号:
1001-1978(2016)06-0768-05
作者:
盖祥云林鹏程何彦峰才让南加
青海民族大学药学院,青海 西宁 810007
Author(s):
GAI Xiang-yun LIN Peng-cheng HE Yan-feng CAIRANG Nan-jia
School of Pharmacy, Qinghai Nationalities University, Xining 810007,China
关键词:
低氧性肺血管收缩 低氧性肺动脉高压 低氧 高原病 机制 内皮细胞 肺动脉平滑肌细胞
Keywords:
hypoxic pulmonary vasoconstriction hypoxic pulmonary hypertension hypoxia high altitude sickness mechanism endothelial cells pulmonary artery smooth muscle cells
分类号:
R322.121; R329.24; R331.32; R544; R594.3
DOI:
10.3969/j.issn.1001-1978.2016.06.007
文献标志码:
A
摘要:
高海拔低氧环境下,持续发生的低氧性肺血管收缩(hypoxic pulmonary vasoconstriction, HPV)能够诱导低氧性肺动脉高压(hypoxic pulmonary hypertension, HPH)的发生和发展。HPV是机体对低氧环境的一种生理反射机制,是肺组织特有的生理现象。但是在高原低氧环境下,HPV的持续发生会促进肺血管重构,导致右心室肥厚,从而加重肺泡缺氧的程度,造成缺氧的恶性循环,进而导致肺水肿、肺心病等重度高原病的发生。HPH早期出现HPV,慢性期形成难以逆转的低氧性肺血管重塑。因此,明确HPV的发生机制以及其在HPH中的作用,能够为高原病的防治提供靶点和思路; HPV发生时,及时、有效的治疗也能够为重度高原病的预防奠定基础。但是目前的研究,尚未能对HPV的发生机制和其在HPH中扮演的角色做一个清晰、全面的阐明。该文将对近年HPH中HPV的相关研究做一综述,旨在为该领域内的研究者以及HPH的临床治疗方面提供参考。
Abstract:
Sustained hypoxic pulmonary vasoconstriction(HPV)as experienced at high altitude can lead to hypoxic pulmonary hypertension(HPH). HPV, a special physiological phenomenon of lung, is the physiological reflex of organism in hypoxic environment. However, in high altitude hypoxic environment, the sustained HPV can lead to pulmonary vascular remodeling and right ventricular hypertrophy, at the same time, the degree of hypoxia in alveoli can be aggravated. Vicious circle of hypoxia is formed, further causing the severe high altitude sickness such as pulmonary edema and pulmonary heart disease. HPV appears in preliminary of HPH, but in the chronic phase, irreversible hypoxic pulmonary vascular remodeling forms. Therefore, studying the mechanism of HPV and the effect of HPV in HPH can provide targets and ideas for the prevention and treatment of high altitude sickness. Additionally, in preliminary stage of HPV, prompt treatment is critical for the prevention of high altitude sickness. However, the mechanism of HPV and its roles in HPH are still not fully elucidated in current studies. This paper summarizes the studies about HPV in HPH of recent years, aiming to provide references for researchers and clinical treatment in this research field.

参考文献/References:

[1] 李明星, 王 勇, 蒋德旗, 等. 参与肺动脉平滑肌细胞增殖信号转导机制及信号转导抑制剂的研究进展[J]. 中国药理学通报,2015,31(5): 605-10.
[1] Li M X, Wang Y, Jiang D Q, et al. Advances in research on signal transduction mechanisms and their inhibitors for the proliferation of pulmonary artery smooth muscle cells[J]. Chin Pharmacol Bull, 2015, 31(5): 605-10.
[2] Humbert M, Sitbon O, Simonneau G. Treatment of pulmonary arterial hypertension[J]. N Engl J Med,2004,351(14): 1425-36.
[3] Ma L, Ambalavanan N, Liu H, et al. TLR4 regulates pulmonary vascular homeostasis and remodeling via redox signaling[J]. Front Biosci(Landmark Ed), 2016,21: 397-409.
[4] Zungu-Edmondson M, Shults N V, Wong C M, Suzuki Y J. Modulators of right ventricular apoptosis and contractility in a rat model of pulmonary hypertension[J]. Cardiovasc Res, 2016,110(1):30-9.
[5] Gai X Y, Wei Y H, Zhang W, et al. Echinacoside induces rat pulmonary artery vasorelaxation by opening the NO-cGMP-PKG-BKCa channels and reducing intracellular Ca2+ levels[J]. Acta Pharmacol Sin,2015,36(5): 587-96.
[6] Ciuclan L, Bonneau O, Hussey M, et al. A novel murine model of severe pulmonary arterial hypertension[J]. Am J Respir Crit Care Med,2011,184(10): 1171-82.
[7] Evans A M, Lewis S A, Ogunbayo O A, Moral-Sanz J. Modulation of the LKB1-AMPK signalling pathway underpins hypoxic pulmonary vasoconstriction and pulmonary hypertension[J]. Adv Exp Med Biol,2015,860: 89-99.
[8] Madonna R, Cocco N, De Caterina R. Pathways and drugs in pulmonary arterial hypertension-focus on the role of endothelin receptor antagonists[J]. Cardiovasc Drugs Ther,2015,29(5): 469-79.
[9] Gao Y, Chen T, Raj J U. Endothelial and smooth muscle cell interactions in the pathobiology of pulmonary hypertension[J]. Am J Respir Cell Mol Biol, 2016,54(4):451-60.
[10] Lai Y C, Potoka K C, Champion H C, et al. Pulmonary arterial hypertension: the clinical syndrome[J]. Circ Res,2014,115(1): 115-30.
[11] Sylvester J T, Shimoda L A, Aaronson P I, Ward J P. Hypoxic pulmonary vasoconstriction[J]. Physiol Rev,2012,92(1): 367-520.
[12] Lee S J, Zhang M, Hu K, et al. CCN1 suppresses pulmonary vascular smooth muscle contraction in response to hypoxia[J]. Pulm Circ,2015,5(4): 716-22.
[13] Shen M, Zhao L, Wu R X, et al. The vasorelaxing effect of resveratrol on abdominal aorta from rats and its underlying mechanisms[J]. Vascul Pharmacol,2013,58(1-2): 64-70.
[14] Crosswhite P, Sun Z. Molecular mechanisms of pulmonary arterial remodeling[J]. Mol Med,2014,20:191-201.
[15] Khoo J P, Zhao L, Alp N J, et al. Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension[J]. Circulation,2005,111(16): 2126-33.
[16] Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension[J]. N Engl J Med,1995,333(4): 214-21.
[17] De Mey J G, Vanhoutte P M. End o'the line revisited: moving on from nitric oxide to CGRP[J]. Life Sci,2014,118(2): 120-8.
[18] Lowenstein C J, Morrell C N, Yamakuchi M. Regulation of Weibel-Palade body exocytosis[J]. Trends Cardiovasc Med,2005,15(8): 302-8.
[19] Green D S, Rupasinghe C, Warburton R, et al. A cell permeable peptide targeting the intracellular loop 2 of endothelin B receptor reduces pulmonary hypertension in a hypoxic rat model[J]. PloS One,2013, 8(11): e81309.
[20] Tabima D M, Frizzell S, Gladwin M T. Reactive oxygen and nitrogen species in pulmonary hypertension[J]. Free Radic Biol Med,2012,52(9): 1970-86.
[21] Maron B A, Zhang Y Y, White K, et al. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension[J]. Circulation, 2012,126(8): 963-74.
[22] O'Connell C, Amar D, Boucly A, et al. Comparative safety and tolerability of prostacyclins in pulmonary hypertension[J]. Drug Saf,2016.
[23] 冯恩志, 戴胜归, 杨生岳. 低氧性肺动脉高压研究进展[J]. 中华肺部疾病杂志(电子版), 2014, 7(3): 333-6.
[23] Feng E Z, Dai S G, Yang S Y. Research progress of hypoxic pulmonary artery hypertension[J]. Chin J Lung Dis(Electronic Edition), 2014, 7(3): 333-6.
[24] Montani D, Chaumais M C, Guignabert C, et al. Targeted therapies in pulmonary arterial hypertension[J]. Pharmacol Ther,2014,141(2): 172-91.
[25] Rich S, Kaufmann E, Levy P S. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension[J]. N Engl J Med,1992,327(2): 76-81.
[26] Smith K A, Voiriot G, Tang H, et al. Notch activation of Ca(2+)signaling in the development of hypoxic pulmonary vasoconstriction and pulmonary hypertension[J]. Am J Respir Cell Mol Biol,2015,53(3): 355-67.
[27] Sun Y, Ye L, Liu J, Hong H. Hypoxia-induced cytosolic calcium influx is mediated primarily by the reverse mode of Na+/Ca2+ exchanger in smooth muscle cells of fetal small pulmonary arteries[J]. J Obstet Gynaecol Res,2014,40(6): 1578-83.
[28] Somlyo A P, Somlyo A V. Signal transduction and regulation in smooth muscle[J]. Nature,1994,372(6503): 231-6.
[29] Mishra A, Mohammad G, Norboo T, et al. Lungs at high-altitude: genomic insights into hypoxic responses[J]. J Appl Physiol(1985), 2015, 119(1): 1-15.
[30] Goldenberg N M, Wang L, Ranke H, et al. TRPV4 is required for hypoxic pulmonary vasoconstriction[J]. Anesthesiology,2015,122(6): 1338-48.
[31] Sedivy V, Joshi S, Ghaly Y, et al. Role of Kv7 channels in responses of the pulmonary circulation to hypoxia[J]. Am J Physiol Lung Cell Mol Physiol,2015,308(1): L48-57.
[32] 何俊毅, 施熠炜, 胡晓芸. 钙离子及蛋白激酶C在低氧肺动脉高压平滑肌细胞中的作用[J]. 中华肺部疾病杂志(电子版), 2015, 8(4): 498-501.
[32] He J Y, Shi Y W, Hu X Y. The effect of calcium and protein kinase C in smooth muscle cells of hypoxic pulmonary hypertension[J]. Chin J Lung Dis(Electronic Edition), 2015, 8(4): 498-501.
[33] Hartman W, Helan M, Smelter D, et al. Role of hypoxia-induced brain derived neurotrophic factor in human pulmonary artery smooth muscle[J]. PloS One,2015,10(7): e0129489.
[34] Zhang Y, Lu W, Yang K, et al. Bone morphogenetic protein 2 decreases TRPC expression, store-operated Ca(2+)entry, and basal[Ca(2+)]i in rat distal pulmonary arterial smooth muscle cells[J]. Am J Physiol Cell Physiol,2013,304(9): C833-43.
[35] Lu W, Wang J, Shimoda L A, Sylvester J T. Differences in STIM1 and TRPC expression in proximal and distal pulmonary arterial smooth muscle are associated with differences in Ca2+ responses to hypoxia[J]. Am J Physiol Lung Cell Mol Physiol,2008,295(1): L104-13.
[36] Wang J, Weigand L, Lu W, et al. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells[J]. Circ Res,2006,98(12): 1528-37.
[37] Lu W, Ran P, Zhang D, et al. Sildenafil inhibits chronically hypoxic upregulation of canonical transient receptor potential expression in rat pulmonary arterial smooth muscle[J]. Am J Physiol Cell Physiol,2010,298(1): C114-23.
[38] 王瑞幸, 戴 耄, 穆云萍, 等. 三七皂苷R1对肺高压大鼠肺动脉平滑肌细胞SOCE的抑制作用[J]. 中国药理学通报,2015,31(10): 1463-8.
[38] Wang R X, Dai M, Mu Y P, et al. Inhibition of notoginsenoside R1 on SOCE in pulmonary arterial smooth muscle cells of pulmonary hypertension rats[J]. Chin Pharmacol Bull, 2015, 31(10): 1463-8.
[39] Weissmann N, Dietrich A, Fuchs B, et al. Classical transient receptor potential channel 6(TRPC6)is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange[J].Proc Natl Acad Sci USA, 2006,103(50): 19093-8.
[40] 穆云萍, 焦海霞, 朱壮丽, 等. 慢性低氧大鼠TRPC1表达与肺动脉收缩变化时间曲线关系[J]. 中国药理学通报,2014,30(12): 1667-71.
[40] Mu Y P, Jiao H X, Zhu Z L, et al. Relationship of time-course curve between the expression of TRPC1 and vascular tone of pulmonary arteries in chronic hypoxia pulmonary hypertension rats[J]. Chin Pharmacol Bull, 2014, 30(12): 1667-71.
[41] Peng X, Li H X, Shao H J, et al. Involvement of calcium-sensing receptors in hypoxia-induced vascular remodeling and pulmonary hypertension by promoting phenotypic modulation of small pulmonary arteries[J]. Mol Cell Biochem,2014,396(1-2): 87-98.
[42] Hu F, Koon C M, Chan J Y W, et al. Involvements of calcium channel and potassium channel in Danshen and Gegen decoction induced vasodilation in porcine coronary LAD artery[J]. Phytomedicine,2012,19(12): 1051-8.
[43] Matsumoto T, Kobayashi T, Ishida K, et al. Vasodilator effect of Cassiarin A, a novel antiplasmodial alkaloid from Cassia siamea, in rat isolated mesenteric artery[J]. Biol Pharm Bull,2010,33(5): 844-8.
[44] van Welie I, du Lac S. Bidirectional control of BK channel open probability by CAMKII and PKC in medial vestibular nucleus neurons[J]. J Neurophysiol, 2011, 105(4): 1651-9.
[45] Félétou M. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options?[J]. Br J Pharmacol, 2009, 156(4): 545-62.
[46] Blum-Johnston C, Thorpe R B, Wee C, et al. Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth[J]. Am J Physiol Lung Cell Mol Physiol,2016,310(3):L271-86.
[47] Jin Y, Xie W P, Wang H.Hypoxic pulmonary hypertension and novel ATP-sensitive potassium channel opener: the new hope on the horizon[J]. Zhongguo Ying Yong Sheng Li Xue Za Zhi,2012,28(6): 510-23.
[48] Zuo X, Zong F, Wang H, et al. Iptakalim, a novel ATP-sensitive potassium channel opener, inhibits pulmonary arterial smooth muscle cell proliferation by downregulation of PKC-α[J]. J Biomed Res,2011,25(6): 392-401.
[49] 郭 赞, 宋士军, 宋 爽, 等. 慢性间歇性低压低氧增强丹皮酚舒张大鼠动脉的作用[J]. 中国药理学通报,2014,30(11): 1574-9.
[49] Guo Z, Song S J, Song S, et al. Chronic intermittent hypobaric hypoxia enhances vasodilative effects of paeonol on isolated thoracic aorta rings of rats[J]. Chin Pharmacol Bull, 2014, 30(11): 1574-9.
[50] Basnyat B, Murdoch D R. High-altitude illness[J]. Lancet,2003,361(9373): 1967-74.

相似文献/References:

[1]邓 鋆,张 旭,喻珊珊.HIF-1α和 HIF-2α在低氧性肺动脉高压中的不同作用研究进展[J].中国药理学通报,2017,(01):10.[doi:10.3969/j.issn.1001-1978.2017.01.002]
 DENG Jun,ZHANG Xu,YU Shan-shan.Advances in differential roles of HIF-1α and HIF-2α in the pathogenesis of hypoxic pulmonary hypertension[J].Chinese Pharmacological Bulletin,2017,(06):10.[doi:10.3969/j.issn.1001-1978.2017.01.002]

备注/Memo

备注/Memo:
基金项目:青海省自然科学基金青年项目(No 2016-ZJ-944); 青海省重点实验室发展专项资金项目(No 2015-Z-Y09)
作者简介:盖祥云(1984-),女,博士,讲师,研究方向:藏药药理学,通讯作者E-mail:gaixiangyun1011@126.com;
林鹏程(1966-),男,博士,教授,研究方向:藏药功效成分,E-mail:qhlpc@126.com
更新日期/Last Update: 2016-06-15