[1]余苏云,刘兆国,贾 琦,等.葡萄糖转运蛋白1与肿瘤能量代谢关系的研究进展[J].中国药理学通报,2016,(07):906-909.[doi:10.3969/j.issn.1001-1978.2016.07.005]
 YU Su-yun,LIU Zhao-guo,JIA Qi,et al.Research progress on relationship between glucose transporter 1 and tumor energy metabolism[J].Chinese Pharmacological Bulletin,2016,(07):906-909.[doi:10.3969/j.issn.1001-1978.2016.07.005]
点击复制

葡萄糖转运蛋白1与肿瘤能量代谢关系的研究进展()
分享到:

《中国药理学通报》[ISSN:/CN:]

卷:
期数:
2016年07期
页码:
906-909
栏目:
讲座与综述
出版日期:
2016-07-15

文章信息/Info

Title:
Research progress on relationship between glucose transporter 1 and tumor energy metabolism
文章编号:
1001-1978(2016)07-0906-04
作者:
余苏云12刘兆国12贾 琦12陈力川12祝娉婷12陈文星123王爱云123陆 茵123
1.南京中医药大学药学院,
2. 江苏省中药药效与安全性评价重点实验室,
3.江苏省中医药防治肿瘤协同创新中心,江苏 南京 210023
Author(s):
YU Su-yun12 LIU Zhao-guo12 JIA Qi12 CHEN Li-chuan12 ZHU Ping-ting12 CHEN Wen-xing123 WANG Ai-yun123 LU Yin123
1.School of Pharmacy, Nanjing University of Chinese Medicine;
2.Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medicine;
3.Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine(TCM)Prevention and Treatment of Tumor, Nanjing 210023,China
关键词:
肿瘤转运体-1 肿瘤代谢 葡萄糖 分子机制 特异性受体 治疗策略
Keywords:
glucose transporter-1 tumor metabolism glucose molecular mechanisms specific receptor therapy strategies
分类号:
R-05;R341;R333.6;R343.23;R730.5
DOI:
10.3969/j.issn.1001-1978.2016.07.005
文献标志码:
A
摘要:
近年来,肿瘤能量代谢的研究逐渐成为热点。已有研究表明,多种因子参与对肿瘤能量代谢的调控,其中尤以葡萄糖转运蛋白1(GLUT1)的作用最为关键。研究发现,GLUT1不仅能够调控肿瘤细胞对葡萄糖的摄取,维持葡萄糖的基础代谢; 同时GLUT1还在多种肿瘤中异常表达,以满足肿瘤细胞快速生长对能量的需求,对维持肿瘤细胞的生长、分化、转移及预后也发挥关键的调控作用。与此同时,随着GLUT1三维晶体结构的解析,设计出GLUT1的小分子抑制剂,从而实现“饿死”肿瘤细胞的目的已经成为了可能。这使得GLUT1作为治疗靶点,备受人们关注。该文主要对GLUT1与肿瘤能量代谢的关系研究进展进行综述,探讨GLUT1介导调控肿瘤能量代谢的分子机制及其与临床治疗肿瘤的策略,为临床的后续研究和治疗提供重要参考。
Abstract:
The study on tumor metabolism has been gradually become a hot spot in recent years. A lot of proteins involved in the regulation of tumor metabolism especially the glucose transporter protein 1(GLUT1). As a key regulatory factor mediating energy metabolism within tumor cells, GLUT1 can regulate the glucose intake and maintain the basic level of metabolism in tumor cells. More importantly, the abnormal expression of GLUT1 was associated with many kinds of tumors, of which GLUT1 was used to meet the energy requirement for the fast growth of tumor. Thus GLUT1 also played a crucial role in growth, differentiation and metastasis of tumor cells and prognosis of tumors. Meanwhile, as three-dimensional crystal structure of GLUT1 was determined, it is possible to design the small molecular inhibitors of GLUT1, which can realize “starve to death” tumor cells. GLUT1 can be a particularly attractive target for tumor treatment and interference. The relationship between abnormal expression of GLUT1 protein and tumor metabolism was reviewed. Moreover, the mechanism of tumor metabolism regulated by GLUT1 protein expression and treatment of cancers were discussed, which may provide references for future research and clinical treatment.

参考文献/References:

[1] 沈培亮,刘兆国,孙丽华,等. 肿瘤治疗新靶点TRAP1研究进展[J]. 中国药理学通报,2016, 32(4): 459-63. [1] Shen P L, Liu Z G, Sun L H, et al. Research progress of a new oncotherapy target TRAP1[J]. Chin Pharmacol Bull, 2016, 32(4): 459-63.
[2] Deng D, Yan N. GLUT, SGLT,SWEET: Structural and mechanistic investigations of the glucose transporters[J]. Protein Sci, 2015, 25(3):546-58.
[3] Teicher B A. Targets in small cell lung cancer[J]. Biochem Pharmacol, 2014,87(2):211-9.
[4] Shang R, Wang J, Sun W, et al. RRAD inhibits aerobic glycolysis, invasion, and migration and is associated with poor prognosis in hepatocellular carcinoma[J]. Tumour Biol, 2016,37(4):5097-105.
[5] Kim W S,Kim Y Y,Jang S J, et al. Glucose transporter 1(GLUT1)expression is associated with intestinal type of gastric carcinoma[J]. J Korean Med Sci, 2000,15(4):420-4.
[6] Xintaropoulou C, Ward C, Wise A, et al. A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models[J]. Oncotarget, 2015, 6(28):25677-95.
[7] Mezheyeuski A, Nerovnya A, Bich T, et al. Inter- and intra-tumoral relationships between vasculature characteristics, GLUT1 and budding in colorectal carcinoma[J]. Histol Histopathol, 2015, 30(10):1203-11.
[8] Barron C C, Bilan P J, Tsakiridis T, Tsiani E. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment[J]. Metabolism, 2016, 65(2):124-39.
[9] Jurcovicova J. Glucose transport in brain-effect of inflammation[J]. Endocr Regul, 2014, 48(1):35-48.
[10] Garg M, Thamotharan M, Becker D J, Devaskar S U. Adolescents with clinical type 1 diabetes display reduced red blood cell glucose transporter isoform 1(GLUT1)[J].Pediatr Diabetes, 2014, 15(7):511-8.
[11] Sage J M, Carruthers A. Human erythrocytes transport dehydroascorbic acid and sugars using the same transporter complex[J]. Am J Physiol Cell Physiol, 2014, 306(10):C910-7.
[12] Kapoor S. Glucose transporter 1(GLUT1)and its emerging role as a significant prognostic marker in systemic malignancies[J]. Int J Colorectal Dis, 2013, 28(9): 1317-8.
[13] Yan S, Wang Y, Chen M, et al. Deregulated SLC2A1 promotes tumor cell proliferation and metastasis in gastric cancer[J]. Int J Mol Sci, 2015, 16(7): 16144-57.
[14] Ma J, Liu W, Guo H,et al. N-myc downstream-regulated gene 2 expression is associated with glucose transport and correlated with prognosis in breast carcinoma[J]. Breast Cancer Res, 2014, 16(2):R27.
[15] Xu X, Li J, Sun X, et al. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression[J]. Oncotarget, 2015, 6(28):26161-76.
[16] Sun H, Zhu A, Zhang L, et al. Knockdown of PKM2 Suppresses Tumor Growth and Invasion in Lung Adenocarcinoma[J]. Int J Mol Sci, 2015, 16(10): 24574-87.
[17] Vaz C V, Marques R, Alves M G,et al. Androgens enhance the glycolytic metabolism and lactate export in prostate cancer cells by modulating the expression of GLUT1, GLUT3, PFK, LDH and MCT4 genes[J]. J Cancer Res Clin Oncol, 2016, 142(1):5-16.
[18] Deng D, Xu C, Sun P,et al. Crystal structure of the human glucose transporter GLUT1[J]. Nature, 2014, 510(7503):121-5.
[19] Chen G Q, Tang C F, Shi X K,et al. Halofuginone inhibits colorectal cancer growth through suppression of Akt/mTORC1 signaling and glucose metabolism[J]. Oncotarget, 2015, 6(27):24148-62.
[20] Makinoshima H, Takita M, Saruwatari K, et al. Signaling through the Phosphatidylinositol 3-Kinase(PI3K)/Mammalian Target of Rapamycin(mTOR)Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor(EGFR)-mutated Lung Adenocarcinoma[J]. J Biol Chem, 2015, 290(28):17495-504.
[21] Fan R, Hou W J, Zhao Y J,et al. Overexpression of HPV16 E6/E7 mediated HIF-1α upregulation of GLUT1 expression in lung cancer cells[J]. Tumour Biol, 2016,37(4):4655-63.
[22] Chen T, Ren Z, Ye L C,et al. Factor inhibiting HIF1α(FIH-1)functions as a tumor suppressor in human colorectal cancer by repressing HIF1α pathway[J].Cancer Biol Ther, 2015, 16(2):244-52.
[23] Wu N, Zheng B, Shaywitz A, et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1[J]. Mol Cell, 2013, 49(6):1167-75.
[24] Yun H, Lee M, Kim S S, Ha J. Glucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma[J]. J Biol Chem, 2005, 280(11):9963-72.
[25] Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression[J]. Cancer Res, 2004, 64(7):2627-33.
[26] Zhang C, Liu J, Liang Y, et al. Tumour-associated mutant p53 drives the Warburg effect[J]. Nat Commun, 2013, 4:2935.
[27] Yun J, Rago C, Cheong I, et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells[J]. Science, 2009, 325(5947):1555-9.
[28] Osthus R C, Shim H, Kim S, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc[J]. J Biol Chem, 2000, 275(29):21797-800.
[29] Koch A, Lang S A, Wild P J, et al. Glucose transporter isoform 1 expression enhances metastasis of malignant melanoma cells[J]. Oncotarget, 2015, 6(32):32748-60.
[30] Yun J, Mullarky E, Lu C, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH[J]. Science, 2015, 350(6266):1391-6.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(No 81403260,81573859),中国博士后科学基金(No 2014M551639); 江苏省自然科学基金(No 1401138C); 2013年江苏高校优秀科技创新团队计划[苏教科(2013)10号文]; 江苏高校品牌专业建设工程资助项目PPZY2015A070; 江苏高校中药学优势学科建设工程资助项目(PAPD)[苏政办发(2014)37号文]
作者简介:余苏云(1993-),女,硕士生,研究方向:活血化瘀中药对肿瘤转移的影响,E-mail:1004824062@qq.com;
陆 茵(1963-),女,教授,博士生导师,研究方向:活血化瘀中药对肿瘤转移的影响,通讯作者,E-mail:luyingreen@126.com
更新日期/Last Update: 2016-07-15