[1]孙雪娇,刘 祎,李 城,等.抗肾纤维化药物高内涵筛选模型的建立及应用[J].中国药理学通报,2017,(03):327-334.[doi:10.3969/j.issn.1001-1978.2017.03.008]
 SUN Xue-jiao,LIU Yi,LI Cheng,et al.Establishment and application of high content screening model for anti-renal fibrosisdrugs[J].Chinese Pharmacological Bulletin,2017,(03):327-334.[doi:10.3969/j.issn.1001-1978.2017.03.008]
点击复制

抗肾纤维化药物高内涵筛选模型的建立及应用()
分享到:

《中国药理学通报》[ISSN:/CN:]

卷:
期数:
2017年03期
页码:
327-334
栏目:
论著
出版日期:
2017-03-15

文章信息/Info

Title:
Establishment and application of high content screening model for anti-renal fibrosisdrugs
文章编号:
1001-1978(2017)03-0327-08
作者:
孙雪娇1刘 祎1李 城1王曦廷1吴清华3张宇欣2栗世铀3李亚东1李 彧1
北京中医药大学 1.基础医学院,2.中药学院,北京 100029;
3.中国科学院北京基因组研究所,北京 100101
Author(s):
SUN Xue-jiao1LIU Yi1LI Cheng1WANG Xi-ting1WU Qing-hua3ZHANG Yu-xin2LI Shi-you3LI Ya-dong1LI Yu1
1.School of Basic Medical Science;
2.School of Chinese Medicine, Beijing 100029,China;
3.Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101,China
关键词:
肾纤维化 细胞模型 高内涵分析技术 NRK49F α-SMA 中药化合物
Keywords:
renal fibrosis cell model high-content analysis NRK49F α-SMA Chinese traditional medicine compounds
分类号:
R-332;R282.71;R363-332;R692.9;R965.1
DOI:
10.3969/j.issn.1001-1978.2017.03.008
文献标志码:
A
摘要:
目的 建立可用于高内涵分析的肾纤维化体外的细胞模型,为抗肾纤维化中药化合物的筛选和机制研究奠定基础。方法 本研究通过TGF-β1诱导正常大鼠肾成纤维细胞NRK49F,以肌成纤维细胞标志α-平滑肌肌动蛋白(α-SMA)作为检测指标,通过高内涵成像分析系统对α-SMA荧光表达强度进行检测分析,并对细胞种板密度、诱导时间、诱导培养基中血清浓度等各种条件进行优化,建立稳定的肾纤维化体外模型。在此基础上以TGF-β1受体阻滞剂SB525334和姜黄素、大黄素对模型进行验证。并进一步探讨吡非尼酮是否具有抗肾纤维化功效。结果 实验通过对细胞密度、诱导时间、培养基中血清浓度进行优化,确立了可用于高内涵分析的NRK49F肾纤维化体外模型的建立条件。SB525334、姜黄素、大黄素和吡非尼酮均能减少TGF-β1诱导的α-SMA过表达,抑制NRK49F的活化。结论 实验建立了可用于高内涵筛选技术的肾纤维化体外模型,并能相对稳定地筛选具有抗肾纤维化作用的药物。吡非尼酮在本模型中抑制了成纤维化细胞向肌成纤维细胞转化,提示其可能具有抗肾纤维化作用,为抗肾纤维化药物初筛对象的选择提供了思路。
Abstract:
Aim To establish a cellular model of renal fibrosis in vitro, which can be used for the high-content analysis, and lay a good foundation for the screening and mechanism study of traditional Chinese medicine compounds with anti-fibrotic effect.Methods In this study, normal rat kidney fibroblasts(NRK49F)were induced by TGF-β1. As the maker ofmyofibroblast, alpha smooth muscle actin(α-SMA)was detected and analyzed by high content imaging analysis system, and the cell plate density, induction time, the concentration of serum in medium were optimized, to establish a stable model of renal fibrosis in vitro. Then the model was validated by TGF- β1 receptor blocker SB525334, curcumin and emodin. On this basis,whether pirfenidone had the effect of anti-renal fibrosis was explored. Results By optimizing thecell density, induction time and serum concentration in culture medium, the conditions of NRK49F renal fibrosis model in vitro for high content analysis were established. SB525334, curcumin and emodin and pirfenidone reduced the expression of α-SMA in NRK49F induced by TGF-β1. Conclusions An in vitro model of renal fibrosis, which can be used for high content screening technology, is established and can be used to screen drugs with anti-renal fibrosis effects relatively stably. Pirfenidone in this model inhibits the transformation of NRK49F into myofibroblasts, suggesting that it may be able to inhibit renal fibrosis, providing a way for the selection of objects for anti-renal fibrosis drug screening.

参考文献/References:

[1] Pradere J P,Gonzalez J,Klein J,et al. Lysophosphatidic acid and renal fibrosis[J]. Biochim Biophys Acta,2008,1781(9): 582-7.
[2] Seck S M,Doupa D,Gueye L,et al. Epidemiology of chronic kidney disease in northern region of Senegal: a community-based study in 2012[J]. Pan Afr Med J,2014,18:307.
[3] Xue L,Lou Y,Feng X,et al. Prevalence of chronic kidney disease and associated factors among the Chinese population in Taian, China[J]. BMC Nephrol,2014,15:205.
[4] Xia J,He L Q,Su X. Interventional mechanisms of herbs or herbal extracts on renal interstitial fibrosis[J]. J Integr Med,2016,14(3):165-73.
[5] Dey I,Shah K,Bradbury N A. Natural compounds as therapeutic agents in the treatment cystic fibrosis[J]. J Genet Syndr Gene Ther,2016,7(1):pii284.
[6] 王萌萌,何 玲,胡 梅,等. 高内涵筛选技术及其在药学研究中的应用[J]. 药学进展,2011,11: 481-6.
[6] Wang M M, He L, Hu M, et al. The development of high-content screening technique and its application in pharmaceutical research[J]. Prog Pharmac Sci, 2011,11.481-6.
[7] 胡经阳,严春琳,朱 彦,等. 高内涵筛选应用于中药现代化的前景展望[J]. 天津中医药大学学报,2013,2:120-4.
[7] Hu J Y, Yan C L, Zhu Y, et al. The prospect of the application of high content screening in TCM modernization[J]. J Tianjin Univer Tradit Chin Med,2013,2:120-4.
[8] Fraietta I,Gasparri F. The development of high-content screening(HCS)technology and its importance to drug discovery[J]. Expert Opin Drug Discov,2016,11(5): 501-14.
[9] Bickle M. The beautiful cell: high-content screening in drug discovery[J]. Anal Bioanal Chem,2010,398(1): 219-26.
[10] Denner P,Schmalowsky J,Prechtl S. High-content analysis in preclinical drug discovery[J]. Comb Chem High Throughput Screen,2008,11(3): 216-30.
[11] Zhou D,Liu Y. Renal fibrosis in 2015: Understanding the mechanisms of kidney fibrosis[J]. Nat Rev Nephrol,2016,12(2): 68-70.
[12] Lebleu V S,Taduri G,O'connell J,et al. Origin and function of myofibroblasts in kidney fibrosis[J]. Nat Med,2013,19(8):1047-53.
[13] Falke L L,Gholizadeh S,Goldschmeding R,et al. Diverse origins of the myofibroblast-implications for kidney fibrosis[J]. Nat Rev Nephrol,2015,11(4): 233-44.
[14] Lan H Y.Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation[J]. Int J Biol Sci,2011,7(7): 1056-67.
[15] Meng X M,Tang P M,Li J,et al. TGF-beta/Smad signaling in renal fibrosis[J]. Front Physiol,2015,6:82.
[16] Zhou X,Zhang J,Xu C,et al. Curcumin ameliorates renal fibrosis by inhibiting local fibroblast proliferation and extracellular matrix deposition[J]. J Pharmacol Sci,2014,126(4): 344-50.
[17] Li R,Wang Y,Liu Y,et al. Curcumin inhibits transforming growth factor-beta1-induced EMT via PPARgamma pathway, not Smad pathway in renal tubular epithelial cells[J]. PLoS One,2013,8(3): e58848.
[18] Gaedeke J,Noble N A,Border W A. Curcumin blocks multiple sites of the TGF-beta signaling cascade in renal cells[J]. Kidney Int,2004,66(1): 112-20.
[19] 富徐燕,赵丕文,李亚东,等.姜黄素对人循环纤维细胞增殖及COLⅠ表达影响的研究[J]. 中国药理学通报,2014,7:942-7.
[19] Fu X Y, Zhao P W, Li Y D, et al. Effects of curcumin on proliferation and COL I expression of human circulating fibrocytes[J]. Chin Pharmacol Bull,2014,7:942-7.
[20] 李冬梅,刘 巍. 大黄素对肾纤维化大鼠肾组织MMP-9表达的影响[J]. 中国中医药现代远程教育,2014,10:160-1.
[20] Li D M, Liu W. The effect of emodin on expression of matrix metalloproteinase-9 in rat with renal tubulointerstitial fibrosis[J].Chin Med Mod Dist Ed China,2014,10:160-1.
[21] 李冬梅,孙 禄,刘 巍,等. 大黄素对肾纤维化大鼠肾组织中基质金属蛋白酶组织抑制物-1表达的影响[J]. 齐齐哈尔医学院学报,2010,17:2689-91.
[21] Li D M, Sun L, Liu W,et al.The effect of emodin on expression of tissue inhibitor of metalloproteinase-1 in rat with renal tubulointerstitial fibrosis[J]. J Qiqihar Med Coll,2010,17:2689-91.
[22] Wynn T A. Integrating mechanisms of pulmonary fibrosis[J]. J Exp Med,2011,208(7): 1339-50.
[23] Elpek G O.Cellular and molecular mechanisms in the pathogenesis of liver fibrosis:An update[J]. World J Gastroenterol,2014,20(23):7260-76.

相似文献/References:

[1]刘进稳,辛冰牧,慕容,等.TRB3在肾纤维化中的表达及其与上皮-间叶转化的关系[J].中国药理学通报,2012,(03):407.
 LIU Jin wen,XIN Bing mu,MU Rong,et al.Expression of TRB3 in renal fibrosis and its relation with epithelialmesenchymal transition[J].Chinese Pharmacological Bulletin,2012,(03):407.
[2]黎思彤,郑雪萍,杨学敏,等.以GLP-1受体为靶点的药物筛选模型的建立及功能鉴定[J].中国药理学通报,2017,(02):285.[doi:10.3969/j.issn.1001-1978.2017.02.026]
 LI Si-tong,ZHENG Xue-ping,YANG Xue-min,et al.Development and evaluation of a cell model targeted on GLP-1 receptor[J].Chinese Pharmacological Bulletin,2017,(03):285.[doi:10.3969/j.issn.1001-1978.2017.02.026]
[3]董丽红,张瑞芬,黄 菲,等.油酸诱导单纯性肝脂肪变性细胞模型的建立及应用[J].中国药理学通报,2017,(11):1622.[doi:10.3969/j.issn.1001-1978.2017.11.028]
 DONG Li-hong,ZHANG Rui-fen,HUANG Fei,et al.Establishment and application of hepatocyte steatosis models induced by oleic acid[J].Chinese Pharmacological Bulletin,2017,(03):1622.[doi:10.3969/j.issn.1001-1978.2017.11.028]
[4]时玉霞,李茹柳,邓 娇,等.实时细胞分析法建立小肠上皮细胞生长实验模型[J].中国药理学通报,2018,(02):290.[doi:10.3969/j.issn.1001-1978.2018.02.027]
 SHI Yu-xia,LI Ru-liu,DENG Jiao,et al.The experimental model of intestinal epithelial cell growth established by real time cell analysis[J].Chinese Pharmacological Bulletin,2018,(03):290.[doi:10.3969/j.issn.1001-1978.2018.02.027]
[5]黄 娟,明 露,陈艳芬,等.稳定表达TRPA1通道的HEK-293T细胞模型的建立[J].中国药理学通报,2019,(03):440.[doi:10.3969/j.issn.1001-1978.2019.03.028]
 HUANG Juan,MING Lu,CHEN Yan-fen,et al.Establishment of HEK-293T cell model stably expressing TRPA1 channel[J].Chinese Pharmacological Bulletin,2019,(03):440.[doi:10.3969/j.issn.1001-1978.2019.03.028]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金面上项目(No 81573716,No 81173642)
作者简介:孙雪娇(1990-),女,硕士,研究方向:中西医结合基础肾病,E-mail:1099648128@qq.com;
李 彧(1974-),女,博士,副研究员,副教授,研究方向: 中医药防治器官纤维化,通讯作者,E-mail:liyubeijing1973@163.com
更新日期/Last Update: 2017-03-15