[1]范凯健,吴 菁,李 钦,等.基质金属蛋白酶13在软骨重塑和关节炎中的研究进展[J].中国药理学通报,2018,(05):607-611.[doi:10.3969/j.issn.1001-1978.2018.05.005]
 FAN Kai-jian,WU Jing,LI Qin,et al.Advances in matrix metalloproteinase 13 in cartilage remodeling and arthritis[J].Chinese Pharmacological Bulletin,2018,(05):607-611.[doi:10.3969/j.issn.1001-1978.2018.05.005]
点击复制

基质金属蛋白酶13在软骨重塑和关节炎中的研究进展()
分享到:

《中国药理学通报》[ISSN:/CN:]

卷:
期数:
2018年05期
页码:
607-611
栏目:
讲座与综述
出版日期:
2018-05-26

文章信息/Info

Title:
Advances in matrix metalloproteinase 13 in cartilage remodeling and arthritis
文章编号:
1001-1978(2018)05-0607-05
作者:
范凯健12吴 菁1李 钦1王婷玉1
1.上海交通大学医学院附属第九人民医院药剂科,上海 200011;
2.上海市宝山区中西医结合医院药剂科,上海 201901
Author(s):
FAN Kai-jian12 WU Jing1 LI Qin1 WANG Ting-yu1
1.Dept of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China;
2.Dept of Pharmacy, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201901, China
关键词:
关节炎 基质金属蛋白酶13 Ⅱ型胶原 Runx2 分子靶标 表观调控
Keywords:
arthritis MMP-13 type II collagen Runx2 molecular target epigenetic
分类号:
R-05; R322.72; R345.9; R684.3; R977.3
DOI:
10.3969/j.issn.1001-1978.2018.05.005
文献标志码:
A
摘要:
关节炎是一种常见的慢性疾病,其主要特征是关节软骨的破坏和周围组织的慢性炎症。关节炎的发病机制比较复杂,受多种因素影响。近年来研究发现,关节软骨中基质金属蛋白酶(MMPs)的增加,是造成软骨细胞外基质(ECM)降解,从而引起软骨退化的重要原因。其中,MMP-13是促使其降解的主要酶,它能不可逆地降解Ⅱ型胶原,从而造成关节软骨的破坏。MMP-13可受到多种因素的影响,如IL-1β、TNF-α、Runx2可以诱导MMP-13的表达。MMP-13启动子区域的低甲基化也会诱导其表达,但可以通过抑制组蛋白乙酰化来降低其表达。除此之外,微小RNA也可以通过基因调控来降低MMP-13的表达。MMP-13的上调会导致软骨的退化,进而促进关节炎的进程。综上所述,MMP-13可作为关节炎中重要的治疗靶点,该文将对MMP-13在关节炎中的作用及其调节机制作一综述。
Abstract:
Arthritis is a common chronic disease characterized by the destruction of joint cartilage and inflammation in the surrounding tissues. Although it is known that the pathogenesis of arthritis is influenced by a series of factors, the underlying mechanisms remain unclarified. Recently, increasing attention has been paid to the increase of matrix metalloproteinases(MMPs)in articular cartilage, resulting in an inevitable degradation of cartilage and extracellular matrix(ECM). MMP-13, the major functioning enzyme during arthritis development, plays a vital role in the cartilage destruction, thus contributing to the decomposition of type II collagen irreversibly. A variety of cellular cytokines such as IL-1β and TNF-α, and Runx2 are assumed to affect the expression of MMP-13 in chondrocytes. The hypomethylation of the promoter region of the MMP-13 may induce its expression, while it can be reduced by inhibiting histone acetylation. Meanwhile, microRNA can reduce the expression of MMP-13. In conclusion, MMP-13 can be used as an important therapeutic target in arthritis. In this review, we focus on the role of MMP-13 in arthritis and its underlying regulatory mechanisms.

参考文献/References:

[1] 徐锦荣, 丛 斌, 李淑瑾, 等. CCK-8对TNF-α诱导大鼠RSC-364细胞MMPs/TIMP-1的影响[J]. 中国药理学通报, 2017, 33(4): 567-71. [1] Xu J R, Cong B, Li S J, et al. Effect of CCK-8 on expression of MMPs/TIMP-1 in TNF-α-induced RSC-364[J]. Chin Pharmacol Bull, 2017, 33(4):567-71.
[2] Howes J M, Bihan D, Slatter D A, et al. The recognition of collagen and triple-helical toolkit peptides by MMP-13: sequence specificity for binding and cleavage[J]. J Biol Chem, 2014, 289(35):24091-101.
[3] Lauer-Fields J L, Nagase H, Fields G B. Use of Edman degradation sequence analysis and matrix-assisted laser desorption/ionization mass spectrometry in designing substrates for matrix metalloproteinases[J]. J Chromatogr A, 2000, 890(1):117-25.
[4] van Geffen E W, van Caam A P, van Beuningen H M, et al. IL-37 dampens the IL-1β-induced catabolic status of human OA chondrocytes[J]. Rheumatology(Oxford), 2017, 56(3):351-61.
[5] Arumugam B, Vairamani M, Partridge N C, Selvamurugan N. Characterization of Runx2 phosphorylation sites required for TGF-β1-mediated stimulation of matrix metalloproteinase-13 expression in osteoblastic cells[J]. J Cell Physiol, 2018, 233(2):1082-94.
[6] Cao K, Wei L, Zhang Z, et al. Decreased histone deacetylase 4 is associated with human osteoarthritis cartilage degeneration by releasing histone deacetylase 4 inhibition of runt-related transcription factor-2 and increasing osteoarthritis-related genes: a novel mechanism of human osteoarthritis cartilage degeneration[J]. Arthritis Res Ther, 2014,16(6): 491.
[7] Carpio L R, Bradley E W, Westendorf J J. Histone deacetylase 3 suppresses ERK phosphorylation and matrix metalloproteinase(MMP)-13 activity in chondrocytes[J]. Connect Tissue Res, 2017, 58(1):27-36.
[8] Liao L, Zhang S, Gu J, et al. Deletion of Runx2 in articular chondrocytes decelerates the progression of DMM-induced osteoarthritis in adult mice[J]. Sci Rep, 2017, 7(1):2371.
[9] 李 辉, 芮建中. microRNA对药物体内过程调控的研究进展[J]. 中国药理学通报, 2017, 33(10):1345-9.
[9] Li H, Rui J Z. The research progress of microRNA on regulation of drug disposition in vivo[J]. Chin Pharmacol Bull, 2017, 33(10):1345-9.
[10] Zimmermann P, Boeuf S, Dickhut A, et al. Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter[J]. Arthritis Rheum, 2008, 58(9):2743-53.
[11] Hashimoto K, Otero M, Imagawa K, et al. Regulated transcription of human matrix metalloproteinase 13(MMP-13)and interleukin-1β(IL1B)genes in chondrocytes depends on methylation of specic proximal promoter CpG sites[J]. J Biol Chem, 2013, 288(14):10061-72.
[12] Cheung K S, Hashimoto K, Yamada N, et al. Expression of ADAMTS-4 by chondrocytes in the surface zone of human osteoarthritic cartilage is regulated by epigenetic DNA de-methylation[J]. Rheumatol Int, 2009, 29(5): 525-34.
[13] Higashiyama R, Miyaki S, Yamashita S, et al. Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis[J]. Mod Rheumatol, 2010, 20(1):11-7.
[14] Miyaki S, Sato T, Inoue A, et al. MiRNA-140 plays dual roles in both cartilage development and homeostasis[J]. Genes Dev, 2010, 24(11): 1173-85.
[15] Liang Z J, Zhuang H, Wang G X, et al. MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1β-stimulated human articular chondrocyte C28/I2 cells[J]. Inflamm Res, 2012, 61(5):503-9.
[16] Fields G B. New strategies for targeting matrix metalloproteinases[J]. Matrix Biol, 2015, 44-46:239-46.
[17] De Savi C, Waterson D, Pape A, et al. Hydantoin based inhibitors of MMP-13-discovery of AZD6605[J]. Bioorg Med Chem Lett, 2013, 23(16):4705-12.
[18] Nara H, Sato K, Naito T, et al. Discovery of novel, highly potent, and selective quinazoline-2-carboxamide-based matrix metalloproteinase(MMP)-13 inhibitors without a zinc binding group using a structure-based design approach[J]. J Med Chem, 2014, 57(21): 8886-902.
[19] Little C B, Barai A, Burkhardt D, et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development[J]. Arthritis Rheum, 2009, 60(12):3723-33.
[20] Bouaziz W, Sigaux J, Modrowski D, et al. Interaction of HIF1α and β-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice[J]. Proc Natl Acad Sci U S A, 2016, 113(19):5453-8.
[21] Xie X W, Wan R Z, Liu Z P. Recent research advances in selective matrix metalloproteinase-13 inhibitors as anti-osteoarthritis agents[J]. Chem Med Chem, 2017, 12(15):1157-68.
[22] Singh A, Rajasekaran N, Hartenstein B, et al. Collagenase-3(MMP-13)deficiency protects C57BL/6 mice from antibody-induced arthritis[J]. Arthritis Res Ther, 2013, 15(6):R222.
[23] Lin T H, Tang C H, Wu K, et al. 15-deoxy-Δ(12,14)-prostaglandin-J2 and ciglitazone inhibit TNF-α-induced matrix metalloproteinase 13 production via the antagonism of NF-κB activation in human synovial fibroblasts[J]. J Cell Physiol, 2011, 226(12): 3242-50.
[24] Julovi S M, Ito H, Nishitani K, et al. Hyaluronan inhibits matrix metalloproteinase-13 in human arthritic chondrocytes via CD44 and P38[J]. J Orthop Res, 2011, 29(2):258-64.
[25] Jüngel A,Ospelt C,Lesch M,et al. Effect of the oral application of a highly selective MMP-13 inhibitor in three different animal models of rheumatoid arthritis[J]. Ann Rheum Dis,2010, 69(5):898-902.
[26] Hamamura K, Goldring M B, Yokota H. Involvement of p38 MAPK in regulation of MMP-13 mRNA in chondrocytes in response to surviving stress to endoplasmic reticulum[J]. Arch Oral Biol, 2009, 54(3):279-86.
[27] Wang M, Li S, Xie W, et al. Activation of β-catenin signalling leads to temporomandibular joint defects[J]. Eur Cell Mater, 2014, 28:223-35.
[28] Sakurai A, Okahashi N, Maruyama F, et al. Streptococcus pyogenes degrades extracellular matrix in chondrocytes via MMP-13[J]. Biochem Biophys Res Commun, 2008, 373(3):450-4.

相似文献/References:

[1]周倩,李俊,王婷玉,等.豹皮樟总黄酮对胶原性关节炎大鼠腹腔巨噬细胞产生细胞因子及其免疫功能的影响[J].中国药理学通报,2010,(03):353.
 ZHOU Qian,LI Jun,WANG Ting yu,et al.Effect of total flavonids of Litsea coreana Leve on cytokines production and immunity of peritoneal macrophage from collageninduced arthritis[J].Chinese Pharmacological Bulletin,2010,(05):353.
[2]孙传菊,李 霞,赵懿清,等.调节性T细胞在骨破坏中的作用[J].中国药理学通报,2011,(08):1048.
 SUN Chuan-Ju,LIXia,ZHAO Yi-qing,et al. Role of regulatory T cells in m ediating bone destruction [J].Chinese Pharmacological Bulletin,2011,(05):1048.
[3]褚春民,张洪泉,卜平.薯蓣皂苷对大鼠胶原性关节炎治疗作用的实验研究[J].中国药理学通报,2012,(10):1464.
 CHU Chun min,ZHANG Hong quan,BU Ping.Experimental study on the therapeutic effect of dioscin on rats with collageninduced arthritis[J].Chinese Pharmacological Bulletin,2012,(05):1464.
[4]吴小山,陈飞虎,葛金芳,等.胞外酸化对大鼠关节软骨细胞焦亡的影响及可能机制[J].中国药理学通报,2016,(11):1531.[doi:10.3969/j.issn.1001-1978.2016.11.011]
 WU Xiao-shan,CHEN Fei-hu,GE Jin-fang,et al.Effects of extracellular acidosis on pyroptosis of rat articular chondrocytes and its possible mechanisms[J].Chinese Pharmacological Bulletin,2016,(05):1531.[doi:10.3969/j.issn.1001-1978.2016.11.011]

备注/Memo

备注/Memo:
收稿日期:2017-12-05,修回日期:2018-01-04
基金项目:国家自然科学基金资助项目(No 81301531, 81572104)
作者简介:范凯健(1988 -),男,硕士生,研究方向:药理学,E-mail: fankaijian2017@163.com;
王婷玉(1982 -),女,博士,副主任药师,硕士生导师,研究方向:药理学、临床药学,通讯作者,E-mail: drtywang@163.com
更新日期/Last Update: 2018-04-25